Richard A. Hawkins, Ph.D.

Professor, Physiology and Biophysics

Chicago Medical School
Building: BSB-3.237C
Phone: 847-578-3410
Fax: 847-775-6510
richard.hawkins@rosalindfranklin.edu
Publications
Recent Publications


 Rasgado-Flores, H., Mokashi, A., and Hawkins, R.A., Na+-dependent transport of taurine is found only on the abluminal membrane of the blood-brain barrier. Journal of Experimental Neurology 233:457-462, 2011.

  Hawkins R.A., Viña. J. R., Darryl R. Peterson, D. R. O’Kane, R. , A. Mokashi, A. and Ian A. Simpson, I. A., Amino acid transport across each side of the blood-brain barrier. in Amino Acids in Nutrition and Health (J.P.F. D’Mello ed), CABI, Oxford, 2011, pp 191-214. 


Devraj K., Klinger M., Meyers R., Mokashi A., Hawkins R.A., and Simpson I.A.  GLUT-1 glucose transporters in the blood-brain barrier: differential phosporylation. Journal of Neuroscience Research. 12:1913-1925, 2011

 

Hawkins R.A., Mokashi A., Dejoseph M.R, Viña J.R., Fernstrom J.D. Glutamate permeability at the blood-brain barrier in insulinopenic and insulin-resistant rats. Metabolism. 59:258-66, 2010. Hawkins R.A., Mokashi A., Dejoseph M.R, Viña J.R. 

 

J.R., Fernstrom J.D. Glutamate permeability at the blood-brain barrier in insulinopenic and insulin-resistant rats. Metabolism. 59:258-66, 2010.

Hawkins R.A.: The blood-brain barrier and glutamate. American Journal of Clinical Nutrition 90: 867S-874S, 2009.

 

Devraj K., Geguchadze R, Klinger M.E., Freeman W.M., Mokashi A., Hawkins R.A., and Simpson I.A. Improved membrane protein solubilization and clean-up for optimum two-dimensional electrophoresis utilizing GLUT-1 as a classic integral membrane protein. Journal of Neuroscience Methods. 184:119-23, 2009.

 

Hawkins R.A., Simpson I.A. Mokashi, A. and Viña, J.R.,: Pyroglutamate stimulates Na+-dependent amino-acid transport across the blood-brain barrier. FEBS letters 580: 4382-4386, 2006.

 

O’Kane R.L., Viña, J.R., Simpson, I.A., Zaragoza, R., Mokashi, A. and Hawkins, R.A.: Cationic amino acid transport across the blood-brain barrier is mediated exclusively by system y+. American Journal of Physiology, 291 :E412-419, 2006.


Hawkins, R.A., O’Kane, R.L., Simpson, I.A., and Viña, J.R.: Structure of the blood brain barrier and its role in transport of amino acids. Journal of Nutrition 136: 218S-226S, 2006.

 

Hawkins, R.A., Mokashi, A., Simpson I.A. An active transport system in the blood-brain barrier may reduce levodopa availability. Journal of Experimental Neurology, 195: 267-271, 2005.

 

O’Kane, R.L. Viña J.R., Simpson I.A. and Hawkins, R.A.: Na+-dependent neutral amino acid transporters (A, ASC and N) of the blood-brain barrier: mechanisms for neutral amino acid removal. American Journal of Physiology Endocrinology and Metabolism. . American Journal of Physiology, 287: E622-629, 2004.

 

O’Kane, R.L. and Hawkins, R.A.: A Na+-dependent carrier of large neutral amino acids exists at the abluminal membrane of the blood-brain barrier. American Journal of Physiology, 285:E1167-E1173. 2003.

 

Hawkins, R.A., Peterson D.R. and Viña J.R. The complementary membranes forming the blood-brain barrier. IUBMB Life, 54:101-107, 2002.

 

Simpson I.A., Vannucci S.J., DeJoseph M.R., and Hawkins R.A. Glucose transporter asymmetries in the bovine blood-brain barrier Journal of Biological Chemistry, 20; 276(16):12725-9. 2001.

 

O’Kane, R.L., Martinez-Lopez, I., DeJoseph, M.R., Viña, J.R., Hawkins, R.A. Na+-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier. A Mechanism for glutamate removal. Journal of Biological Chemistry, 274:31891-31895, 1999.

 

Lee, W-J., Hawkins, R.A., Viña, J.R., and Peterson, D.R. Glutamine transport by the blood-brain barrier: a possible mechanism for nitrogen removal. American Journal of Physiology, 274: C1101-C1107, 1998.

 

Hawkins, P.A., DeJoseph, M.R. and Hawkins, R.A.: Diurnal rhythm returns to normal after elimination of portacaval shunting. American Journal of Physiology, 274:E426-E431, 1998.

 

Lee, W-J, Peterson, D.R., Sukowski, E.J. and Hawkins, R.A.: Glucose transport by isolated plasma membranes of the bovine blood-brain barrier. American Journal of Physiology, 272:C1552-C1557, 1997.

 

Hawkins, P.A., DeJoseph, M.R., Viña, J.R., and Hawkins, R.A.: Comparison of the metabolic disturbances caused by end-to-side and by side-to-side portacaval shunts. Journal of Applied Physiology, 80: 885-891, 1996.

 

Hawkins, P.A., DeJoseph, M.R. and Hawkins, R.A.: Eliminating metabolic abnormalities of portacaval shunting by restoring normal liver blood flow. American Journal of Physiology, 270: E1037-E1042, 1996.

 

Hawkins, P.A., DeJoseph, M.R. and Hawkins, R.A.: Reversal of portacaval shunting normalizes brain energy consumption in most brain structures. American Journal of Physiology, 271:E1015-E1020, 1996.

 

Hawkins, R.A., Jessy, J., Mans, A.M. and DeJoseph, M.R.: Effect of reducing brain glutamine synthesis on metabolic symptoms of hepatic encephalopathy. The Journal of Neurochemistry, 60:1000-1006, 1993.

 

DeJoseph, M.R. and Hawkins, R.A.: Glucose consumption decreases throughout the brain only hours after portacaval shunting.  American Journal of Physiology, 260:E613-E619, 1991.

 

Jessy, J., DeJoseph, M.R., and Hawkins, R.A.: hyperammonemia depresses glucose consumption throughout the brain.  The Biochemical Journal, 277:693-696, 1991.

 

Hawkins, R.A. and Jessy, J.: hyperammonemia does not impair brain function in the absence of net glutamine synthesis.  The Biochemical Journal, 277:697-703, 1991.

 

Mans, A.M., DeJoseph, M.R., Davis, D.W., Viña, J.R. and Hawkins, R.A.: Early establishment of cerebral dysfunction after portacaval shunting. American Journal of Physiology, 259:E104-E110, 1990.

 

Jessy, J., Mans, A.M., DeJoseph, M.R., and Hawkins, R.A.: hyperammonemia causes many of the changes found after portacaval shunting. The Biochemical Journal, 272:311-317, 1990.

 

 

Life in Discovery
3333 Green Bay Road, North Chicago, Il 60064-3095 • 847-578-3000