Midwest Proteome Center


Marc J. Glucksman, Ph.D.
Director, Midwest Proteome Center

Xinli Yang, Ph.D.
Facility Manager

LOCATION L.132-139
PHONE: 847-578-8310

Users must fill out the intake form, and submit in person to Dr. Yang.  For new projects, consultation is required because of the stringent sample requirements for useful data output.


The Midwest Proteome Center is a new research resource facility at the Rosalind Franklin University of Medicine and Science, and comprises half of the Rosalind Franklin Structural Biology Laboratories.   As a facility in support of biomedical research in proteomics, we serve the ongoing research endeavors on campus and the scientific community at-large by providing state-of-the-art modern technologies at a reasonable cost.  The basic technologies employed include: protein separation, mass spectral analyses, protein identification, database mining and bioinformatics support.  Protein and proteome analyses are particular focal points of the center.


A mass spectrometer, in simple terms, is a precise technology that measures the mass:charge ratio of chemical components of molecules.  This allows us to identify unknown proteins (proteomics) and metabolites (metabolomics) and characterize the complex of the non-covalent interaction between proteins and ligands OR proteins with other proteins.  As genomics, proteomics and metabolomics are pushing forward our understanding of life sciences, the analytical tools employed at the molecular level are becoming increasingly important.  Mass spectrometry has become an essential component underpinning some of the greatest discoveries of our times.



Our new high-end Orbitrap Elite mass spectrometer, complete with a Dionex Ultimate 3000 RSLC-nano LC front-end can perform high-quality proteomics applications.  This instrument contains both the most advanced Orbitrap and Ion-trap detectors available, offering resolution to 240,000 with superior scanning speed and mass accuracy producing more identifications with improved protein coverage and higher confidence.  Coupled with multiple fragmentation methods (CID, HCD and ETD) we are able to offer a wide range of protein, peptide and small molecule applications including: routine protein identification with shotgun bottom-up proteomics, identification and characterization of post-translational modifications, and quantitive proteomics (SILAC, iTraq and label-free).  We have also added an Experion GelFree 8100 Fractionation system to facilitate sample preparation for Top-down proteomic applications for examining intact proteins without fragmenting with proteases.


We have the Applied Biosystems QSTAR® XL Hybrid LC/MS/MS System, a high-performance, hybrid quadrupole time-of-flight mass spectrometer designed for unknown proteins (proteomics) and metabolites (metabolomics).   As the highest-sensitivity hybrid quadrupole time-of-flight mass spectrometer, the QSTAR enables us to determine the mass and high-quality structural information of peptides, proteins and drug metabolites, as well as the type and location of post-translational modifications (PTMs). 


We have an Applied Biosystems Voyager-DE STR Biospectrometry Workstation, a MALDI-TOF system (matrix-assisted laser desorption ionization-time-of-flight) that includes a 3-meter flight path, and improved ion optics with a high field detector.  It delivers high sensitivity, very good resolution and mass accuracy.  This instrument is used for the analysis of proteins, peptides, carbohydrates, etc.  In MALDI-TOF, the analyte is first co-crystallized with a UV-absorbing matrix, then submitted to pulse nitrogen UV laser radiation (337 nm).  This causes the vaporization of the analyte/matrix crystals and produces ions directed into a flight tube (time-of-flight).  The mass of an ion is measured by the time it requires to arrive at the detector (the smaller ions are faster, the larger are slower).  A total sample volume of up to 2 µl is loaded onto MALDI sample plate in volatile solvents.  The masses of peptides (low molecular weight, 750-4,500) can be determined on low fmol quantities with an average mass accuracy lower than 10 ppm.  Masses can potentially be obtained on numerous biopolymers that range from ~600 to >100,000 Daltons.


We have acquired a Ciphergen Enterprise ProteinChip System Series 4000 for analyzing proteins captured on proprietary ProteinChip arrays in a high throughput format.   The Protein Chip Arrays provide a variety of surface chemistries for researchers to optimize protein capture and analysis.  The chemistries include chromatographic surfaces such as hydrophobic for reversed-phase capture, cation-and anion exchange surfaced for charged macromolecules, immobilized metal affinity capture (IMAC) for capturing metal-binding proteins, and pre-activated surfaces to investigate interactions such as antibody-antigen, receptor-ligand, etc.  A typical SELDI experiment is adding the protein sample, washing, adding the energy adsorbing molecule essential when analyzing a large number of samples to maximize reproducibility.  The chips are then processed in the mass reader where the bound proteins are liberated by ionization, and “fly” through a time-of-flight tube where   they separate based on mass and charge.  A bar code system is implemented for sample tracking.

UltiMate 3000 (Dionex) nano capillary LC separation system. Samples detected in femto-mol range. We implement the nano capillary LC on-line or off-line coupling at the front-end of the QStar XL mass spectrometer in electrospray mode (see below) for high sensitivity and separation efficiency. The modules provide highest flexibility and address almost any front-end separation prior to MS.


DIGE [Differential In-Gel Electriophoresis]
DeCyder softwareFirst Dimension: 
LKB Multiphor Amersham Biosciences (GE Healthcare) IPGphor
Bio-Rad ROTOFOR- preparative  IEF cell 

Second Dimension:
Amersham Biosciences (GE Healthcare)Ettan DALT12

Amersham Biosciences (GE Healthcare) Typhoon 9400

Phoretix 2D Evolution gel image analysis software:

Automated spot detection, matching and reliable image warping with flexible data display.
Batch process multiple analyses for high throughput
MW/pI determination using standards
Accurate densitometry and statistical evaluations
Cross-stain analysis for Differential Gel Electrophoresis (DIGE)
XML import/export of data

Amersham Biosciences (GE Healthcare) Ettan Spot Picker


We are building a PLIMS (Proteomic Laboratory Information Management System).  Data is stored on a dedicated 2 Terabyte server and is mirrored for backups and archiving.  Gigabyte optic fiber wires the facility for data transmission between instruments and the investigator workstations throughout the facility.  Databases include public as well as proprietary sources.  Additionally, there are computational chemistry packages for structural proteomics initiatives in conjunction with our X-Ray Crystallography Facility across the hall.

MS Analyst, ProID, ProBLAST from ABI (instrumentation)

MASCOT Search Engine: A powerful database search engine on-line
Integrates all the proven methods of database searching
Peptide Fingerprint, Sequence Query and MS/MS Ion Search
Unique, true probability-based scoring
Total flexibility in chemical/post-translational modifications
Batch or Real-time mode



formic acid, ßmercaptoethanol, dithiothreitol, very volatile organic solvents, HCl, NH4OH, acetic acid


HEPES, TRIS, NH4Oac, octyl glucoside (<0.05%) TFA (<0.05%; a strong ion suppressor for ESI)
NOTE: minimizing buffer and solubilizing agents improves performance.  Use the minimum of these to control pH and solubility


glycerol, NaN3 (azide), DMSO, SDS, phosphate, NaCl, 1M urea, 1M guanidine, sucrose, TritonX-100 (<0.01%)

Helpful tips for sample preparation

Always use distilled and deionized water. Clean water is a critical condition for good sample preparation.
Keratin-like skeleton proteins are very common contaminants most of the time. They can come from protein extraction, gel preparation, or any step prior to trypsin. Always wear gloves and prevent any kind of contamination of keratin during sample preparation.
Sample clean up: using dialysis to cut off small molecules, ion, or cation exchange, reverse phase cartridges, Zip tips. These are available at cost from the facility.

SUPPORT:    Please acknowledge these grants in publications:
NIH NCRR S10 OD010662
HRSA C76 HF03610-01-00



MPC intake form.pdf


Effective October 15, 2011

Typhoon 9400 Phosphorimager

  • Internal  $26- 1st half hour + $10 every additional ½ hour
  • Outside Institutions  $42- 1st half hour + $16 every additional 1/2 hour

SELDI (Ciphergen) 

  • Internal  $50 per spot/ $100 minimum includes Mass Std/prep
  • Outside Institutions  $80 per spot

MALDI-TOF (Voyager) 

  • Internal  $50 per spot includes matrix co-xtal prep+ bioinformatics
  • Outside Institutions  $80 per spot

MALDI-TOF (no prep #) Self operate    

  • Internal  $20 per spot
  • Outside Institutions  $80 per spot


  • Internal  $135/sample; (n>10) $125/sample, (n>24) $110 (HIRES):
  • Outside Institutions  $220/sample; (n>10) $200/sample, (n>24) $175/sample (HIRES):

QSTAR XL ESI-MSn (no prep #)   

  • $40/sample; (n>10) $30/sample, (n>24) $20 (HIRES):

* INCLUDES ALL OF THE FOLLOWING: excise gel bands, cleanup, destain, reduce/alkylate, protein In-gel tryptic digestion, peptide extraction, LC-MS/MS, pre/post calibration, bioinformatics (MASCOT and PEAKS), with personal reporting.

# INCLUDES ONLY: operator-aided nano-LC-MS/MS and pre calibration
NO PREP denotes certification in sample preparation, instrument operation and bioinformatics involving at least five years of prior experience.  For internal users only.


Life in Discovery
Midwest Proteome Center Links
3333 Green Bay Road, North Chicago, Il 60064-3095 • 847-578-3000