Enter Title

Fabio Re, Ph.D.

Associate Professor
Office: 2.343
Telephone: (847) 578-8700 x8650
Lab: 2.406A-F
Telephone: (847) 578-8700 x7706
E-mail: fabio.re@rosalindfranklin.edu



Fabio Re graduated from the University of Milan in 1989. In the lab of Dr. Alberto Mantovani at the Mario Negri Institute for Pharmacological Research he conducted studies on the role of the Interleukin-1 receptor type II that led to the concept of “decoy receptor”, a paradigm later found to apply to other cytokine systems.

In 1994 he moved to Columbia University, New York, in the lab of Dr. Jeremy Luban where he studied the effect of HIV infection on cell cycle progression.

In 1999 he joined the lab of Dr. Jack Strominger at the Dana-Farber Cancer Institute, Boston, where he studied several aspects of the biology of toll-like receptors (TLR), including the differential activation of dendritic cells by TLR agonists and the interaction of LPS with TLR4/MD-2. During this period he held an Instructor position in the Department of Pathology of the Harvard Medical School.

In 2004 he was appointed Assistant Professor in the Department of Molecular Sciences at the University of Tennessee Health Science Center in Memphis. His research efforts remained focused on innate immunity. He was tenured and promoted to Associate Professor in 2010.

In 2012 he joined the Department of Microbiology and Immunology of Chicago Medical School at Rosalind Franklin University of Medicine and Science as Associate Professor.

Fabio serves as grant reviewer for the National Institute of Health, the National Science Foundation, and the Welcome Trust. He is Associate Editor for The Journal of Immunology and reviewer for several immunological journals.


The long-term goal of our lab is to augment our understanding of the role of Toll-like receptors (TLR) and Nod-like receptors (NLR) during innate and adaptive immune responses.

TLR and NLR recognize microbial products and endogenous “danger signals” and activate signaling pathways that initiate the inflammatory response and regulate development of adaptive immunity. Some NLR molecules are part of a multiprotein complex called inflammasome that is responsible for the proteolytic processing and secretion of IL-1b and IL-18.

Our lab investigates the activation of TLR and NLR in distinct experimental settings:

Vaccine adjuvants

Most vaccine adjuvants stimulate the immune system by activating various innate immune receptors. We have found that the vaccine adjuvant Alum activates the NLRP3-inflammasome and we are investigating other pathways that contribute to alum’s adjuvanticity. Understanding at the molecular level the mechanism of action of alum and other adjuvants is a prerequisite for improvement of their immunostimulatory spectrum.

Host-pathogen Interaction

We are interested in defining the role of TLR and NLR during infections with the NAID Select Agents Francisella tularensis and Burkholderia pseudomallei. We are also investigating how the interaction of the intestinal microbiota with the host innate immune system shapes the response to infections and the development of immunity.

Cancer-related Inflammation

Tumorigenesis triggers an inflammatory response and, conversely, inflammation promotes malignant transformation. We are investigating how cancer-related inflammation is initiated and sustained with particular attention to the role of the inflammasome in cancer.


Click here to view a full list of publications.

del Barrio L., Sahoo M., Lantier L., Reynolds J.M., Ceballos-Olvera I., Re F. (2015) Production of anti-LPS IgM by B1a B cells depends on IL-1β and is protective against lung infection with Francisella tularensis LVS. PLoS Pathog 11(3): e1004706. doi:10.1371/journal.ppat.1004706

Sahoo, M., del Barrio, L., Miller, M.A., and Re, F. (2014) Neutrophil elastase causes tissue damage that decreases host tolerance to lung infection with Burkholderia species. PLoS Pathog. 10(8): e1004327. doi:10.1371/journal.ppat.1004327. PMID:25166912

Ceballos-Olvera, I., Sahoo, M., Miller, M. A., Barrio, L., and Re, F. (2011) Inflammasome-dependent Pyroptosis and IL-18 Protect Against Burkholderia   pseudomallei Lung Infection While IL-1b Is Deleterious. PLoS Pathog 7(12): e1002452. doi:10.1371/journal.ppat.1002452

Sahoo, M., Ceballos-Olvera, I., Barrio, L. and Re, F. (2011) Role of the inflammasome, IL-1b, and IL-18 in bacterial infections. ScientificWorldJournal 11:2037-2050

Madan Lala, R., Peixoto K.V., Re, F., Rengarajan J. (2011) Mycobacterium tuberculosis Hip1 dampens macrophage pro-inflammatory responses by limiting TLR2 activation. Infect. Immun. 79:4828-4838

Jayakar, H., Parvathreddy, J., Fitzpatrick, E. A., Bina, X. R., Bina, J. E., Re, F., Emery, F. D., and Miller, M.A. (2011) A galU mutant of Francisella tularensis is attenuated for virulence in a murine pulmonary model of tularemia. BMC Microbiol. 11:179

Tsukahara, T., Tsukahara, R., Fujiwara, Y., Yue, J., Cheng, Y., Guo, H., Bolen, A., Zhang, C., Balazs, L., Re, F., Du, G., Frohman, M. A., Baker, D. L., Parrill, A. L., Uchiyama, A., Kobayashi, T., Murakami-Murofushi, K., and Tigyi, G. (2010) Phospholipase D2-dependent Inhibition of the Nuclear Hormone Receptor PPARγ by Cyclic Phosphatidic Acid. Molec. Cell 39:421-432 

Re, F. (2010) Inflammasome activation by pathogenic crystals and particles. Prog. Inflamm. Res. (Martinon, F., Couillin, I., Petrilli, V., eds) (in press)

Li, H., Ambade, A., and Re, F. (2009) Cutting Edge: Necrosis activates the NLRP3 inflammasome. J. Immunol. 183:1528-1532 

Li, H., Willingham, S. B., Ting, J. P.-Y., and Re, F. (2008) Cutting Edge: Inflammasome activation by Alum and Alum’s adjuvant effect are mediated by NLRP3.J. Immunol. 181:17-21 

Nance, S.C., Yi, A.K., Re, F., Fitzpatrick, E.A.(2008) MyD88 is necessary for neutrophil recruitment in hypersensitivity pneumonitis. J. Leukoc. Biol. 83:1207-17 

Thakran, S., Li, H., Lavine, C.L., Miller, M. A., Bina, J. E., Bina, X. R., Re, F. (2008) Identification of Francisella tularensis lipoproteins that stimulate the Toll-like receptor (TLR) 2/TLR1 heterodimer. J. Biol. Chem. 283:3751-3760 

Li, H., Nooh, M.M., Kotb, M., and Re, F. (2008) Commercial peptidoglycan preparations are contaminated with superantigen-like activity that stimulates IL-17 production. J. Leuk. Biol. 83:409-418 

Li, H., Nookala, S., and Re, F. (2007) Alum Adjuvants Activate Caspase-1 And Induce IL-1b And IL-18 Release. J. Immunol. 178:5271-5276. (68)· Teghanemt, A., Re, F., Prohinar, P., Widstrom, R., Gioannini, T. L., and Weiss, J. P. (2007). Novel roles in human MD-2 of phenylalanine 121 and 126 and tyrosine 131 in activation of Toll-like Receptor 4 by endotoxin. J. Biol. Chem. 283:1257-1266 

Cao, F., Castrillo, A., Tontonoz, P., Re, F., Byrne, G.I. (2006) Chlamydia pneumoniae-induced Macrophage Foam Cell Formation Is Mediated by Toll-Like Receptor 2. Infect Immun. 75:753-759 

Prohinar, P., Re, F., Widstrom, R., Zhang, D., Teghanemt, A., Weiss, J. P., and Gioannini, T. L. (2006) Specific high affinity interactions of monomeric endotoxin: protein complexes with Toll-like receptor 4 ectodomain. J. Biol. Chem. 282:1010-1017 

Li, H, Nookala, S., Bina, X. W., Bina, J. E., and Re, F. (2006) Innate immune response to Francisella tularensis is mediated by TLR2 and caspase-1 activation.J. Leuk. Biol. 80: 766-773 

UPDATED: 03.25.2015